At steady-state, the flow rate in must equal the mass flow rate out, otherwise the tank will overflow or go empty (transient state). While the reactor is in a transient state the model equation must be derived from the differential mass and energy balances.In a CSTR, one or more fluid reagents are introduced into a tank reactor equipped with an impeller while the reactor effluent is removed. The impeller stirs the reagents to ensure proper mixing. Simply dividing the volume of the tank by the average volumetric flow ratethrough the tank gives the residence time, or the average amount of time a discrete quantity of reagent spends inside the tank. Usingchemical kinetics, the reaction's expected percent completion can be calculated. Some important aspects of the CSTR:
The reaction proceeds at the reaction rate associated with the final (output) concentration.
Often, it is economically beneficial to operate several CSTRs in series. This allows, for example, the first CSTR to operate at a higher reagent concentration and therefore a higher reaction rate. In these cases, the sizes of the reactors may be varied in order to minimize the total capital investment required to implement the process.
It can be seen that an infinite number of infinitely small CSTRs operating in series would be equivalent to a PFR.
The behavior of a CSTR is often approximated or modeled by that of a Continuous Ideally Stirred-Tank Reactor (CISTR). All calculations performed with CISTRs assume perfect mixing. If the residence time is 5-10 times the mixing time, this approximation is valid for engineering purposes. The CISTR model is often used to simplify engineering calculations and can be used to describe research reactors. In practice it can only be approached, in particular in industrial size reactors.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment